
Currently used local anesthetics and 
their formulations each have indi-
vidual characteristics that allow them 

to claim clinically useful niches to validate 
their continued market presence. While 
the introduction of articaine—in 1982 
in Canada and in 2000 in the US—has 
gained much of the market share in North 
America, lidocaine and mepivacaine have 
remained commonly used agents.1 In 
Canada, where articaine is the most used 
agent, a survey of general dentists showed 
that from 1993 to 2007, mepivacaine usage 
declined but remained the third most used 
agent.2 Mepivacaine’s niche has been con-
sidered by many dentists to be the “safer” 
lidocaine alternative, to be used in elderly 
or cardiovascular disease patients, because it 
not only comes without a vasoconstrictor, 
but it is available with levonordefrin, which 
is assumed to have less vasopressor potency 
and 25% of the direct beta effects on the 
heart.3 It is now known, however, that 
levonordefrin acts similarly to norepineph-
rine, as it elevates not only systolic blood 
pressure, but diastolic and mean arterial 
pressures as well. Used at 5 times the con-
centration of epinephrine, it possesses rela-
tively the same or more potential for cardiac 
stimulation, especially elevations in blood 
pressure.4 Mepivacaine is also commonly 
used—in a formulation without levonorde-
frin—for children, as it is available without 
a vasoconstrictor for shorter postoperative 
duration, whereas articaine and lidocaine 
have longer durations and must have vaso-
constrictors for their efficacy. Many general 
and pediatric practices use mepivacaine 

formulations exclusively with these charac-
terizations in mind. Whereas the 2 different 
vasoconstrictors used in local anesthetics 
bear many similarities to each other with 
similar clinical limitations, it is worthwhile 
to look at mepivacaine by itself.

Rather than being a lidocaine substitute, 
mepivacaine possesses distinct pharmaco-
kinetic characteristics of its own that are 
important for the clinician to understand. 
This article reviews the unique pharmacol-
ogy of mepivacaine and the potential clini-
cal implications involved with its use.

History and chemistry:  
pipecholyl xylidines 
In the years immediately after the 
development of the xylidine derivative, 
lidocaine, there followed a series of 
chemical syntheses based upon the same 

successful 2,6-xylidine-amide structure, 
with emphasis on increasing the dura-
tion of action. In 1957, af Ekenstam et 
al synthesized (along with many other 
structures with anesthetic properties) 
mepivacaine and bupivacaine, both very 
similar in structure and with longer dura-
tions than lidocaine.5 Each preserved the 
2,6-xylidine group on the aromatic ring, 
but each had a shortened intermediate 
chain, and replaced the terminal tertiary 
amine with a less basic methyl-piperidine 
ring. Homologous local anesthetics that 
share the mepivacaine structure, such 
as bupivacaine and ropivacaine, are 
referred to as pipecholyl xylidines due 
to the presence of this pipecholyl acid 
moiety (Fig. 1). Bupivacaine differs from 
mepivacaine only by substitution of the 
methyl group on the piperidine ring by a 
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Fig. 1. Pipecholyl xylidines compared to lidocaine.
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more lipid soluble butyl (C4H9) group. It 
was not until the late 1970s, however, that 
bupivacaine was approved for clinical use 
as a nerve blocker in dentistry.6-8 

Mepivacaine, being less toxic than 
bupivacaine, was immediately evaluated 
for clinical use in various types of regional 
and dental anesthesia and was identi-
fied as having a faster onset and longer 
duration than lidocaine without a vaso-
constrictor.9-12 Approved by the FDA in 
1960, it was subsequently studied in many 
dental trials, where it rapidly established 
its dual utility in dentistry when used 
in a formulation without a vasoconstric-
tor or in a formulation with 1:20,000 
levonordefrin (Neo-Cobefrin, Novocol 
Pharmaceutical of Canada, Inc.) which 
markedly increased its duration.13,14 

Lipid solubility and potency 
Mepivacaine, lidocaine, and prilocaine 
are considered to be “intermediate” 
in terms of their lipid solubility and 
anesthetic potencies (Table).15 The cor-
relation of lipid solubility, and the ability 
to penetrate membranes with increased 
affinity for hydrophobic binding sites 
are the main determinants of anesthetic 
potency.16 The lipid solubility and hydro-
phobicity (tendency to be readily soluble 
in nonpolar solvents but only sparingly in 
water) is lowest in mepivacaine compared 
to the other local anesthetics. 

Hydrophobicity correlates with in vitro 
methods that measure conduction block-
ing (anesthetic) potency on isolated nerve 
fibers, such as rabbit vagus and sciatic. 

These methods showed mepivacaine to 
have a correspondingly lower anesthetic 
potency than lidocaine or prilocaine under 
in vitro conditions.17 However, these mea-
surements were derived under controlled 
conditions and do not directly reflect in 
vivo anesthetic potency. They also do not 
correctly reflect the clinical end-points of 
mepivacaine use, where success is measured 
by an adequate conduction block, and 
the physiologic variables that affect tissue 
concentration, diffusion, and ionization 
are more complex. Animal studies with 
live nerve blocks have shown the potency 
of mepivacaine to be equivalent or greater, 
with a faster onset time, and longer dura-
tion of anesthesia than lidocaine and 
prilocaine.18 Mepivacaine, lidocaine, and 
prilocaine have all been shown in numer-
ous clinical studies to have similar inter-
mediate anesthetic efficacy, regardless of 
differences in their lipid solubility.19-21 

Effectiveness in infected tissues 
The ionization constant, or pKa, of 
mepivacaine is also the lowest of the inter-
mediate agents (articaine and lidocaine 
have the same pKa). At 36°C, the pKa’s 
of the intermediate-acting agents are all 
close enough to make onset times roughly 
equivalent under normal physiologic con-
ditions.22 Estimates of the effects of acidic 
conditions such as those found in infected 
tissue—using quantitative structure-
activity relationship modeling (QSAR) 
calculations—have shown the relative 
anesthetic potency of lidocaine drops 
72.8% from a normalized 100 (at pH 7.4) 

to 27.2 (at pH 6.5).22 In comparison, the 
relative anesthestic potency of prilocaine 
decreases by 66.5%, and mepivacaine 
decreases by  64.7%. Theoretically, 
mepivacaine would lose less potency 
when injected into areas of reduced pH 
and this may be considered an advantage. 
However, realistically, this is a rare occur-
rence if a regional block is available.

Hypersensitivity and  
cross reactivity 
For patients who are known to be allergic 
to sulphites, the availability of mepiva-
caine without vasoconstrictor and sodium 
metabisulphite is a highly valuable clinical 
asset, since articaine and lidocaine must 
have vasoconstrictors added for their 
efficacy. Allergy to mepivacaine itself, as 
well as any of the amide local anesthetics 
is very rare, but does occur.23 Most case 
reports of mepivacaine allergic reactions 
prior to the mid-1980s were related to 
the methylparaben used as antimicrobials 
in the cartridges; these were subsequently 
removed by FDA mandate.24 

A large 2009 study that analyzed the 
French Pharmacovigilance database over 
a 12-year period (1995-2006) found 
16 cases of allergic reactions to amide local 
anesthetics, of which 11 were immediate 
Type I reactions occurring within 1 hour 
with severe symptoms.25 Of the Type 1 
reactions, 6 were due to lidocaine, 2 to 
mepivacaine, 2 to articaine, and 1 to bupi-
vacaine. Of the other 5 reactions, which 
were delayed-type skin reactions, 4 were 
due to lidocaine and 1 to mepivicaine.25

Cross-reactivity among the amides, pre-
viously thought to be rare, was found in 6 
cases (38%) and all were between lidocaine 
and mepivacaine. In patients with a true 
lidocaine or mepivacaine allergy, neither 
lidocaine nor mepivacaine should be 
used as a substitute due to very possible 
cross-allergenicity.25 

A 2006 report in Spain published a 
similar case of a patient with confirmed 
lidocaine and mepivacaine allergies who 
was not allergic to bupivacaine, despite 
its structural similarity.26 No cross-
allergenicity to articaine was found in 
either study. The findings in these and 
other studies suggest that articaine may 
have rare cross-allergenicity with other 
members of the amide class, including 
delayed-type reactions.27,28 

Table. Physicochemical properties and relative in vitro conduction blocking 
potency of the intermediate-acting amide local anesthetics.15

Anesthetic
MW base  
(g/mol)

pKa 
(36°C)

Hydrophobicitya  
(mol/L) 

Lipid solubility  
(distribution  

coefficient Q7.4)b

Relative conduction 
blocking potency  
(in vitro, isolated  

nerve fibers)

Lidocaine 234 7.8 304 (366) 43 (110) 2.0

Prilocaine 220 8.0 129 25 1.8

Mepivacaine 246 7.7 90 (130) 21 (42) 1.5

aOctanol/buffer partition coefficients for unprotonated species only: 25°C. Values in parentheses: 36°C.
bQ7.4 = (total drug/ml octanol)/(total drug/ml buffer) at pH 7.4. Includes ionized and unionized partition 
coefficients. 

Margins of error not shown.
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Systemic absorption
At therapeutic concentrations, mepiva-
caine has an intrinsic vasodilating activ-
ity intermediate between lidocaine and 
prilocaine.29 In various arterial blood flow 
studies, lidocaine markedly increased 
blood flow whereas mepivacaine and 
prilocaine tended to either maintain or 
decrease peripheral blood flow.30-32 This 
would appear to be an additional safety 
factor, by keeping systemic levels low. 
However, in maxillary infiltration studies 
conducted by Goebel et al, serum levels 
of the mepivacaine formulation without 
vasoconstrictors were always higher 
and more persistent than lidocaine.33,34 
Complimentary studies by Goebel et al 
comparing lidocaine and mepivacaine 
with their respective vasoconstrictors, epi-
nephrine and levonordefrin, also showed 
that mepivacaine produced significantly 
higher and more variable serum levels 
than lidocaine at all time intervals.34,35 
Medical studies comparing lidocaine and 
mepivacaine in regional blocks also indi-
cate that mepivacaine, even in the vaso-
constrictor formulation, produce higher 
and more sustained systemic blood levels 
on the order of 35% to 38%.36,37 

The studies by Goebel et al showed that 
mepivacaine displays mean peak levels 
at about 30 minutes, with or without 
a vasoconstrictor, while lidocaine with 
epinephrine produces peak levels earlier, 
at approximately 15 minutes.33-35 Since 
the duration of mepivacaine without 
a vasoconstrictor is about 30 minutes, 
reinjection at that time occurs at peak-
ing serum levels. In addition, at all later 
time intervals, differences in mepivacaine 
serum levels are not significantly different 
whether or not vasoconstrictor is used. 
Serum levels at time intervals beyond 
30 minutes in maxillary infiltration 
studies are essentially the same regard-
less of whether or not the vasoconstrictor 
formulation was used.38 The mean peak 
(Cmax) percentage difference between 
plain 2% mepivacaine and 2% mepi-
vacaine with levonordefrin was only 
8%, while the peak difference between 
lidocaine with and without epinephrine 
was 29%.32 Systemic levels of mepivacaine 
decrease less when compared to lidocaine 
in the presence of a vasoconstrictor. A 
formulation with 3% mepivacaine (no 
vasoconstrictor) produces the highest 

systemic levels of local anesthetic, which 
are 1.5 times higher than 2% mepivacaine 
with levonordefrin, and thus has the most 
potential for chronic accumulation.35 

Metabolism and disposition 
compared to other local 
anesthetics
Mepivacaine, like the other amide 
local anesthetics, undergoes extensive 
hepatic biotransformation with <5% 
urinary excretion of the unchanged 
drug. Metabolism is primarily through 
hydroxylation of the parent compound 
to inactive 3-OH-mepivacaine and 
4-OH-mepivacaine by CYP1A2 (Fig. 2). 
CYP1A2 is constitutive, and CYP1A1 
is the inducible isoform which also 
participates in metabolism. CYP3A 

also contributes to the formation of 
4-OH-mepivacaine.39 All these hydroxyl 
(OH) metabolites are excreted as glucuro-
nide conjugates and comprise >50% of the 
total mepivacaine dose. Urinary sampling 
shows the 3-OH-mepivacaine to be the 
major metabolite earlier in the process, 
with the 4-hydroxy compound produced 
later in smaller amounts, indicating the 
predominance of CYP1A metabolism.40 
Demethylation by CYP3A produces pipe-
coloxylidide, a minor metabolite account-
ing for about 1% of the urinary output. 

Lidocaine metabolism involves similiar 
enzymatic activities, but CYP3A4 plays 
the larger role in dealkylation to the 
major metabolite monoethylglycinex-
ylidide (MEGX), an active metabolite 
that still retains central nervous system 

Fig. 2. Mepivacaine metabolism.
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(CNS) toxicity. CYP1A contributes to 
forming MEGX in addition to generat-
ing 3-OH-lidocaine which is converted 
to 3-OH-MEGX.41 These are all eventu-
ally eliminated as glucuronide conju-
gates. MEGX is metabolized to inactive 
glycinexylidide (GX) and excreted for 
the most part renally.42 The remaining 
MEGX and GX is further broken down 
to 2,6-xylidine metabolites when the 
xylidine ring is removed by hydrolytic 
reactions involving hepatic carboxylester-
ases or amidases (Fig. 3).43 

Prilocaine metabolism occurs in the 
liver and kidney by carboxylesterases 
and CYP3A4 that generate o-toluidine. 
CYP2E1 produces hydroxylated toluidine 
metabolites that represent more than 40% 
of the urinary metabolites of prilocaine. 
O-toluidine and its hydroxylated variants 
can oxidize hemoglobin to methemoglo-
bin, a critical dose-limiting restriction 
for prilocaine use.44 Drug interactions 
with prilocaine mainly involve inducers 
of CYP3A4 (carbamazepine, phenytoin, 
rifampin), or other drugs that contribute 
to methemoglobinemia, such as benzo-
caine, nitrates, or acetaminophen.45 

Articaine has the simplest and most 
rapid metabolism of the amides due to its 
carboxyl group ester linkage. Articaine 
is metabolized rapidly into articainic 
acid by plasma carboxylesterases with a 
plasma half-life of 20 minutes.46 Forty 
percent to 70% is excreted as articainic 
acid, and 4% to 15% as articainic acid 
glucuoronide (Fig. 4). Almost all major 
P450 cytochromes participate in the 
remaining metabolism of articaine, but 
only 10% of the total dose is metabo-
lized by cytochromes, making articaine 
relatively resistant to pharmacokinetic 
drug interactions.47 

Lidocaine clearance is reduced meta-
bolically by inhibitors of CYP3A4, such 
as cimetidine, erythromycin, and azole 
antifungals. Antidepressants and benzodi-
azepines that heavily utilize CYP3A4 have 
also been associated with serious lidocaine 
toxicities, including sertraline (Zoloft), 
escitalopram (Lexapro), desipramine 
(Norpramin), and flurazepam (Dalmane).48 
Because of the high hepatic extraction ratio 
of lidocaine, drugs that reduce hepatic 
blood flow also reduce its metabolism 
significantly. Beta-blockers that decrease 
cardiac output, especially propranolol, 
decrease lidocaine elimination by decreas-
ing hepatic blood flow.49 Propranolol also 
prolongs mepivacaine blood levels, but 
mepivacaine is not as dependent on hepatic 
blood flow since it has a lower hepatic 
clearance (extraction ratio) of 0.51 com-
pared to 0.72 for lidocaine.50-52 

Pharmacokinetic drug interactions with 
mepivacaine are more likely to involve 
inhibitors of CYP1A2. Potent inhibition 
of CYP1A2 occurs with selective serotonin 
receptor inhibitors fluvoxamine (Luvox) 
and fluoxetine (Prozac) and moderate 
inhibition with paroxetine (Paxil) and ser-
traline (Zoloft).52 Other strong inhibitors of 
CYP1A2 and drugs known to interfere with 
mepivacaine metabolism include caffeine, 
grapefruit juice, fluoroquinolone antibiot-
ics, and verapamil (Calan), mexiletine 
(Mexitil), and zileuton (Zyflo).53 Lastly, 
significant hepatic CYP1A2 levels are not 
present in infancy (<1 year), and may not 
be fully functional before the age of 3 years, 
which prolongs metabolism of mepivacaine 
in infancy, whereas fetal CYP3A7 and 
immature CYP3A are present at birth.54,55 

The main difference in pharmacokinetic 
safety levels between local anesthetics is the 
total clearance rate (Cltot). Local anesthetic 

duration of activity is determined by 
vascular redistribution from the local site 
and is only indirectly and weakly cor-
related with final elimination of the drug 
from the body. Total clearance (expressed 
in volume/time) is the removal of a drug 
from a volume of plasma in a given unit 
of time as the sum of all clearances by all 
the various elimination mechanisms, such 
as renal and hepatic. Of the currently used 
intermediate-acting agents, mepivacaine 
has the slowest total clearance. In compari-
son, the total body clearance of lidocaine 
is 3 times higher than that of mepivacaine 
(0.95-1.1 l/min vs 0.45 l/min).36 Medical 
studies examining systemic levels of mepi-
vacaine after caudal or regional blocks have 
clinically demonstrated the drug’s rela-
tively long persistence.56,57 The typically 
slower total clearance of mepivacaine is a 
factor that can lead to potential accumula-
tion in cases of repetitive dosing over time 
or excessive doses, especially when children 
are involved.58-60 In neonates, the lidocaine 
total plasma clearance normalized to body 
weight is not significantly different than 
adults because more lidocaine is excreted 
renally and unchanged.61 The neonatal 
capacity for aromatic hydroxylation, 
however, is very limited, thus the total 
plasma clearance of mepivacaine is <50% 
the adult clearance rate, coupled with a 
hepatic clearance that is approximately 
25% that of adults.62 Concomittant drug 
interaction from CYP1A inhibition would 
also contribute to prolonged or toxic 
blood levels. Prilocaine has a notably fast 
total clearance—almost 2.5 times that of 
lidocaine—which not only indicates high 
hepatic extraction but also extrahepatic 
metabolism.63,64 This hydrolysis of the 
amide bond occurs very efficiently, con-
sidering only 5% of prilocaine is excreted 

Fig. 4. Articaine metabolism.
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unchanged. Articaine has the fastest total 
body clearance of all amide local anesthet-
ics, ranging from 3.9 l/min for intraoral 
injections to 8.9 l/min for IV injections.46 

In dentistry, local anesthetic toxicity 
occurs more frequently in children, most 
often with mepivacaine.65 Plain mepiva-
caine is favored and useful in pediatric 
dentistry for its shorter duration of activ-
ity, but plain mepivicaine leads to higher 
systemic levels which are subject to a slow 
total clearance rate. Even with levonorde-
frin, serum levels are not decreased as they 
are with lidocaine and a vasoconstrictor. 
Mepivacaine—especially 3% mepivacaine 
without a vasoconstrictor—has been 
implicated in most reported fatalities 
due to excessive dosing.66,67 Factors that 
contribute include practitioners not under-
standing fully the implications of injecting 
additional anesthetic in low body weight 
children, basing the dosage on the number 
of carpules rather than the patient’s weight, 
and in many instances not understanding 
the synergistic effects of concommitant 
opioids or CNS depressants in pediatric 
sedation protocols. For example, opioids 
such as meperidine can decrease convul-
sant thresholds by producing respiratory 
acidosis and elevating arterial carbon 
dioxide, which increase the CNS toxicity 
of local anesthetics.68 All these factors can 
contribute to toxicity due to mepivacaine’s 
inherent characteristic of maintaining 
prolonged and relatively high serum levels 
even when used with a vasoconstrictor. 

Conclusion 
Mepivacaine is an efficacious and useful 
intermediate-acting local anesthetic for 
use in dentistry as it can be used when 
required and without a vasoconstrictor. 
The presence of a vasoconstrictor increases 
the duration of action but has little effect 
on systemic blood levels. The slower total 
clearance of mepivacaine makes it more 
susceptible to the various mechanisms 
that can lead to chronic toxicity, such as 
the lack of fully functional enzymes in 
infants, inadvertant excessive dosing of 
3% mepivacaine, or repeated dosing in 
conjunction with long appointments, 
renal failure, or drug inhibition of CYP1A 
(in elderly patients). Children <5 years 
of age are most susceptable to overdose 
and are also often given sedation that can 
increase toxicity. Weight-based dosing 

in children should be used as a matter of 
course, and the maximum recommended 
dose should never be exceeded, especially 
when using 3% mepivacaine. It has been 
recommended by many other authors that, 
since the 3% formulation is potentially 
1.5 times more toxic than the 2% for-
mulation, mepivacaine use in children be 
restricted to smaller volumes, and that its 
use be limited to supraperiosteal injections 
whenever possible.60 
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